37 research outputs found

    Implications for the protection of nocturnal migrants

    Get PDF
    The replacement of conventional lighting with energy‐saving light emitting diodes (LED) is a worldwide trend, yet its consequences for animals and ecosystems are poorly understood. Strictly nocturnal animals such as bats are particularly sensitive to artificial light at night (ALAN). Past studies have shown that bats, in general, respond to ALAN according to the emitted light color and that migratory bats, in particular, exhibit phototaxis in response to green light. As red and white light is frequently used in outdoor lighting, we asked how migratory bats respond to these wavelength spectra. At a major migration corridor, we recorded the presence of migrating bats based on ultrasonic recorders during 10‐min light‐on/light‐off intervals to red or warm‐white LED, interspersed with dark controls. When the red LED was switched on, we observed an increase in flight activity for Pipistrellus pygmaeus and a trend for a higher activity for Pipistrellus nathusii. As the higher flight activity of bats was not associated with increased feeding, we rule out the possibility that bats foraged at the red LED light. Instead, bats may have flown toward the red LED light source. When exposed to warm‐white LED, general flight activity at the light source did not increase, yet we observed an increased foraging activity directly at the light source compared to the dark control. Our findings highlight a response of migratory bats toward LED light that was dependent on light color. The most parsimonious explanation for the response to red LED is phototaxis and for the response to warm‐white LED foraging. Our findings call for caution in the application of red aviation lighting, particularly at wind turbines, as this light color might attract bats, leading eventually to an increased collision risk of migratory bats at wind turbines

    Migratory flight imposes oxidative stress in bats

    Get PDF
    Many animal species migrate over long distances, but the physiological challenges of migration are poorly understood. It has recently been suggested that increased molecular oxidative damage might be one important challenge for migratory animals. We tested the hypothesis that autumn migration imposes an oxidative challenge to bats by comparing values of 4 blood-based markers of oxidative status (oxidative damage and both enzymatic and nonenzymatic antioxidants) between Nathusius’ bats Pipistrellus nathusii that were caught during migration flights with those measured in conspecifics after resting for 18 or 24 h. Experiments were carried out at Pape Ornithological Station in Pape (Latvia) in 2016 and 2017. Our results show that flying bats have a blood oxidative status different from that of resting bats due to higher oxidative damage and different expression of both nonenzymatic and enzymatic antioxidants (glutathione peroxidase). The differences in oxidative status markers varied between sampling years and were independent from individual body condition or sex. Our work provides evidence that migratory flight might impose acute oxidative stress to bats and that resting helps animals to recover from oxidative damage accrued en route. Our data suggest that migrating bats and birds might share similar strategies of mitigating and recovering from oxidative stress

    Nathusius’ bats, Pipistrellus nathusii, bypass mating opportunities of their own species, but respond to foraging heterospecifics on migratory transit flights

    Get PDF
    In late summer, migratory bats of the temperate zone face the challenge of accomplishing two energy-demanding tasks almost at the same time: migration and mating. Both require information and involve search efforts, such as localizing prey or finding potential mates. In non-migrating bat species, playback studies showed that listening to vocalizations of other bats, both con-and heterospecifics, may help a recipient bat to find foraging patches and mating sites. However, we are still unaware of the degree to which migrating bats depend on con-or heterospecific vocalizations for identifying potential feeding or mating opportunities during nightly transit flights. Here, we investigated the vocal responses of Nathusius’ pipistrelle bats, Pipistrellus nathusii, to simulated feeding and courtship aggregations at a coastal migration corridor. We presented migrating bats either feeding buzzes or courtship calls of their own or a heterospecific migratory species, the common noctule, Nyctalus noctula. We expected that during migratory transit flights, simulated feeding opportunities would be particularly attractive to bats, as well as simulated mating opportunities which may indicate suitable roosts for a stopover. However, we found that when compared to the natural silence of both pre-and post-playback phases, bats called indifferently during the playback of conspecific feeding sounds, whereas P. nathusii echolocation call activity increased during simulated feeding of N. noctula. In contrast, the call activity of P. nathusii decreased during the playback of conspecific courtship calls, while no response could be detected when heterospecific call types were broadcasted. Our results suggest that while on migratory transits, P. nathusii circumnavigate conspecific mating aggregations, possibly to save time or to reduce the risks associated with social interactions where aggression due to territoriality might be expected. This avoidance behavior could be a result of optimization strategies by P. nathusii when performing long-distance migratory flights, and it could also explain the lack of a response to simulated conspecific feeding. However, the observed increase of activity in response to simulated feeding of N. noctula, suggests that P. nathusii individuals may be eavesdropping on other aerial hawking insectivorous species during migration, especially if these occupy a slightly different foraging niche

    Bidirectional movements of Nathusius’ pipistrelle bats (Pipistrellus nathusii) during autumn at a major migration corridor

    Get PDF
    Migration is well documented for many species throughout the animal kingdom. Although migration is also a common behaviour in bats, it is rarely studied due to the cryptic nature of the phenomenon. Recoveries of banded individuals have shown that Nathusius' pipistrelles (Pipistrellus nathusii) can fly more than 2000 km between their summer and winter ranges in Europe, but further details of how and where they move between the endpoints of their seasonal journeys remain elusive. Here, we used three-dimensional acoustic tracking at a coastal migration corridor to elucidate the flight behaviour of Nathusius' pipistrelles during late summer. Analyzing 432 recorded flight trajectories, we show that the majority of bats followed the expected southerly direction, parallel to the coastline, on all nights, and flying at the optimal speed for long-distance travel with minimal energy expenditure. However, on one day with stronger winds, about 20 % of the bats flew in the opposite, i.e. northerly, direction. The observation of a proportion of individuals flying antiparallel to the mass of migrating conspecifics within the same movement corridor highlights that individuals may follow contrasting movement strategies at the same time and place, presumably depending on environmental conditions. We argue that it is possible for Nathusius’ pipistrelles to fly back and forth (south and north) during autumn migration, spending more time on this migration corridor than required for a straight one-way flight. This highlights the urgent need to protect migration corridors along coastlines, particularly as wind energy development continues

    The immune response of bats differs between pre-migration and migration seasons

    Get PDF
    Maintaining a competent immune system is energetically costly and thus immunity may be traded against other costly traits such as seasonal migration. Here, we tested in long-distance migratory Nathusius' pipistrelles (Pipistrellus nathusii), if selected branches of immunity are expressed differently in response to the energy demands and oxidative stress of aerial migration. During the migration period, we observed higher baseline lymphocyte and lower neutrophil levels than during the pre-migration period, but no stronger response of cellular effectors to an antigen challenge. Baseline plasma haptoglobin, as a component of the humoral innate immunity, remained similar during both seasons, yet baseline plasma haptoglobin levels increased by a factor of 7.8 in migratory bats during an immune challenge, whereas they did not change during the pre-migration period. Oxidative stress was higher during migration than during pre-migration, yet there was no association between blood oxidative status and immune parameters, and immune challenge did not trigger any changes in oxidative stress, irrespective of season. Our findings suggest that humoral effectors of the acute phase response may play a stronger role in the first-line defense against infections for migrating bats compared to non-migrating bats. We conclude that Nathusius' pipistrelles allocate resources differently into the branches of their immune system, most likely following current demands resulting from tight energy budgets during migration

    Wind farm facilities in Germany kill noctule bats from near and far

    Get PDF
    Over recent years, it became widely accepted that alternative, renewable energy may come at some risk for wildlife, for example, when wind turbines cause large numbers of bat fatalities. To better assess likely populations effects of wind turbine related wildlife fatalities, we studied the geographical origin of the most common bat species found dead below German wind turbines, the noctule bat (Nyctalus noctula). We measured stable isotope ratios of non-exchangeable hydrogen in fur keratin to separate migrants from local individuals, used a linear mixed-effects model to identify temporal, spatial and biological factors explaining the variance in measured stable isotope ratios and determined the geographical breeding provenance of killed migrants using isoscape origin models. We found that 72% of noctule bat casualties (n = 136) were of local origin, while 28% were long-distance migrants. These findings highlight that bat fatalities at German wind turbines may affect both local and distant populations. Our results indicated a sex and age-specific vulnerability of bats towards lethal accidents at turbines, i.e. a relatively high proportion of killed females were recorded among migratory individuals, whereas more juveniles than adults were recorded among killed bats of local origin. Migratory noctule bats were found to originate from distant populations in the Northeastern parts of Europe. The large catchment areas of German wind turbines and high vulnerability of female and juvenile noctule bats call for immediate action to reduce the negative cross-boundary effects of bat fatalities at wind turbines on local and distant populations. Further, our study highlights the importance of implementing effective mitigation measures and developing species and scale-specific conservation approaches on both national and international levels to protect source populations of bats. The efficacy of local compensatory measures appears doubtful, at least for migrant noctule bats, considering the large geographical catchment areas of German wind turbines for this species

    In situ novel environment assay reveals acoustic exploration as a repeatable behavioral response in migratory bats

    Get PDF
    Integrating information on species-specific sensory perception together with spatial activity provides a high-resolution understanding of how animals explore environments, yet frequently used exploration assays commonly ignore sensory acquisition as a measure for exploration. Echolocation is an active sensing system used by hundreds of mammal species, primarily bats. As echolocation call activity can be reliably quantified, bats present an excellent animal model to investigate intra-specific variation in environmental cue sampling. Here, we developed an in situ roost-like novel environment assay for tree-cave roosting bats. We repeatedly tested 52 individuals of the migratory bat species, Pipistrellus nathusii, across 24 hours, to examine the role of echolocation when crawling through a maze-type arena and test for consistent intra-specific variation in sensory-based exploration. We reveal a strong correlation between echolocation call activity and spatial activity. Moreover, we show that during the exploration of the maze, individuals consistently differed in spatial activity as well as echolocation call activity given their spatial activity, a behavioral response we term ‘acoustic exploration’. Acoustic exploration was correlated with other exploratory behaviors, but not with emergence latency. We here present a relevant new measure for exploration behavior and provide evidence for consistent (short-term) intra-specific variation in the level at which wild bats collect information from a novel environment

    High vulnerability of juvenile Nathusius' pipistrelle bats (Pipistrellus nathusii) at wind turbines

    Get PDF
    Large numbers of bats are killed by wind turbines globally, yet the specific demographic consequences of wind turbine mortality are still unclear. In this study, we compared characteristics of Nathusius' pipistrelles (Pipistrellus nathusii) killed at wind turbines (N = 119) to those observed within the live population (N = 524) during the summer migration period in Germany. We used generalized linear mixed-effects modeling to identify demographic groups most vulnerable to wind turbine mortality, including sex (female or male), age (adult or juvenile), and geographic origin (regional or long-distance migrant; depicted by fur stable hydrogen isotope ratios). Juveniles contributed with a higher proportion of carcasses at wind turbines than expected given their frequency in the live population suggesting that juvenile bats may be particularly vulnerable to wind turbine mortality. This effect varied with wind turbine density. Specifically, at low wind turbine densities, representing mostly inland areas with water bodies and forests where Nathusius' pipistrelles breed, juveniles were found more often dead beneath turbines than expected based on their abundance in the live population. At high wind turbine densities, representing mostly coastal areas where Nathusius' pipistrelles migrate, adults and juveniles were equally vulnerable. We found no evidence of increased vulnerability to wind turbines in either sex, yet we observed a higher proportion of females than males among both carcasses and the live population, which may reflect a female bias in the live population most likely caused by females migrating from their northeastern breeding areas migrating into Germany. A high mortality of females is conservation concern for this migratory bat species because it affects the annual reproduction rate of populations. A distant origin did not influence the likelihood of getting killed at wind turbines. A disproportionately high vulnerability of juveniles to wind turbine mortality may reduce juvenile recruitment, which may limit the resilience of Nathusius' pipistrelles to environmental stressors such as climate change or habitat loss. Schemes to mitigate wind turbine mortality, such as elevated cut-in speeds, should be implemented throughout Europe to prevent population declines of Nathusius' pipistrelles and other migratory bats
    corecore